Chapter 1: Vector Spaces
$\mathbb{R}^n$ 与 $\mathbb{C}^n$
复数
复数的定义:
- 有序实数对,写作 $a+bi$
- 复数集合记作 $\mathbb{C}$
- 复数加法与乘法按多项式定义
复数的性质:
- 交换律(加法、乘法)
- 结合律(加法、乘法)
- 单位元(加法、乘法)
- 加法逆
- 乘法逆
- 分配律
证明:
交换律:
Let: $\alpha = a + bi$, $\beta = c + di$
Then: $\alpha + \beta = (a + c) + (b + d)i = \beta + \alpha$
$\alpha\beta = (ac-bd) + (ad+bc)i = \beta\alpha$
$\blacksquare$
结合律:
Let: $\alpha = a + bi$, $\beta = c + di$, $\gamma=e+fi$ where $a,b,c,d,e,f\in\mathbb{R}$
Then: $(\alpha + \beta) +\gamma = (a + c + e) + (b + d + f)i = \alpha + (\beta + \gamma)$
$(\alpha\beta)\gamma = (ace-adf-bcf-bde)+(acf+ade+bce-bdf)i = \alpha(\beta\gamma)$
$\blacksquare$
单位元:
Let $\gamma = a+bi$
Then:
$\gamma + 0 = a + bi + 0 = (a + 0) + bi = a + bi = \gamma$
$\gamma1=(a+bi)*1=a+bi=\gamma$
$\blacksquare$
加法逆:
For any $\alpha = a+bi \in \mathbb{C}$, we can construct $\beta = -a - bi$, then:
$\alpha+\beta = (a-a) + (b-b)i = 0$
$\blacksquare$
乘法逆:
For any $\alpha = a+bi \in \mathbb{C}$ such that $\alpha\ne 0$, we can construct $\beta = \frac{a-bi}{a^2+b^2}$, then:
$\alpha\beta = (a+bi)\frac{a-bi}{a^2+b^2}=\frac{a^2+b^2}{a^2+b^2}=1$
$\blacksquare$
分配律:
Let: $\alpha = a + bi$, $\beta = c + di$, $\gamma=e+fi$, where $a,b,c,d,e,f\in\mathbb{R}$
$\gamma(\alpha+\beta)=(ae+ce-bf-df)+(af+be+cf+de)i=\gamma\alpha+\gamma\beta$
$\blacksquare$
$-\alpha$、减法、$1/\alpha$、除法:
- 记加法逆与乘法逆为$-\alpha$、$1/\alpha$
- 记减法为加上加法逆,除法为乘上乘法逆
$\mathbb{F}$:域,在本书中表示 $\mathbb{C}$ 或 $\mathbb{R}$。
组(Lists)
组的定义:
- 长度为 $n$ 的组有 $n$ 个有顺序的元素
- 一般用括号与逗号的记法
- 两个组相等,当且仅当两个组长度相等、元素相同、顺序一样
长度为 2 的组为对,长度为 3 的组为三元组,长度为 $n$ 的组为“n 元组”。
组的长度有限
$\mathbb{F}^n$
$\mathbb{F}^n$ 定义:$\mathbb{F}$ 中长度为 $n$ 的组的集合,即 $\mathbb{F}^n={(x_1,…,x_n):x_j\in\mathbb{F}, j = 1,…,n}.$
$\mathbb{F}^n$ 加法:对应坐标相加:$(x_1,…,x_n)+(y1,…,yn)=(x_1+y_1,…,x_n+y_n).$
$\mathbb{F}^n$ 加法交换律证明:
Let $x = (x_1,…,x_n)$, $y=(y_1,…,y_n)$
Then: $x + y = (x_1+y_1,…,x_n+y_n)$ $=(y_1+x_1,…,y_n+x_n)$ $=y+x$ $\blacksquare$
$\mathbb{F}^n$ 里面的元素可以称为向量。
$0$ 向量的定义: $0=(0,…,0)$
加法逆元的定义:$x+(-x)=0$,即:$x = (x_1,…,x_n)$,则$-x=(-x_1,…,-x_n)$
标量乘法的定义:$\gamma(x_1,…,x_n) = (\gamma x_1,…,\gamma x_n)$
Definition of Vector Spaces
向量空间
首先定义集合内的加法与数乘:
- 加法:从集合中的两个元素到集合中的一个元素的函数
- 数乘:从集合中的一个元素与 $\mathbb{F}$ 中的一个数到集合中的一个元素的函数
向量空间的定义:
- 满足集合加法与集合数乘的集合
- 交换律(加法)
- 结合律(加法与数乘)
- 加法单位元
- 加法逆
- 数乘单位元
- 分配律
向量空间内的元素可称为向量或者点。
在 $\mathbb{R}$ 上的向量空间为实向量空间,在 $\mathbb{C}$ 上的向量空间为复向量空间。
$\mathbb{F}^S$
$\mathbb{F}^S$ 是定义域为集合 $S$,值域为数域 $\mathbb{F}$ 的函数的集合。
$\mathbb{F}^S$ 是一个向量空间。
向量空间的基本性质
- 唯一加法单位元
- 唯一加法逆
- 0 数乘任何向量得向量 0
- 任何数数乘向量 0 得向量 0
- -1 数乘向量得到该向量的加法逆
证明:
唯一加法单位元:
Suppose $0$ and $0’$ are both the additive identities for a vector space $V$.
Then: $0’ = 0’ + 0 = 0 + 0’ = 0$
So the additive identity is unique for a vector space.
$\blacksquare$
唯一加法逆:
Suppose $V$ is a vector space, $v\in V$, $w$ and $w’$ are both additive inverse of $v$.
Then: $w’ = w’ + 0 = w’ + (v + w) = (w’ + v) + w = = 0 + w = w$
So the additive inverse is unique in a vector space.
$\blacksquare$
0 数乘任何向量得向量 0:
For $v\in V$, we have:
$0v=(0+0)v=0v+0v$
add the additive inverse of $0v$ to both side of the equation, we get:
$0 = 0v$
$\blacksquare$
任何数数乘向量 0 得向量 0:
For $a\in F$, we have:
$a0 = a(0+0) = a0+a0$
add the additive inverse of $a0$ to both side of the equation, we get:
$0 = a0$
$\blacksquare$
-1 数乘向量得到该向量的加法逆:
For $v\in V$, we have:
$v + (-1)v =1v + (-1)v = (1+(-1))v=0v=0$
So $(-1)v$ is the additive inverse of $v$.
So $(-1)v = -v$
$\blacksquare$
子空间
子空间的定义与条件
如果向量空间 $V$ 的子集 $U$ 也是一个向量空间,那么称 $U$ 是 $V$ 的子空间。
子集为子空间的条件:
- 存在加法单位元
- 在加法下封闭
- 在数乘下封闭
证明:
Suppose $U$ is a subset of vector space $V$ and satisfy the conditions above.
The additive identity exist.
Since $U$ is closed under addition and scalar multiplication, these 2 operation over this set exists.
If $u\in U$, then $-u$ must also in $U$ because $U$ is closed under scalar multiplication, so the additive inverse exists.
The reset of definition, associativity, commutativity, multiplicative identity, distributive properties, they hold on the larger space $V$, so they also hold in $U$.
$\blacksquare$
一个例子:所有定义在 $(0,3)$ 上,且满足 $f’(2) = b$ 的可微实值函数集合是 $\mathbb{R}^{(0,3)}$ 的子空间,当且仅当 $b = 0$。因为零函数需要在子空间中,且需要满足 $f’(2) = b$ 的条件。
子空间的和
假如 $U_1,…,U_m$ 是 $V$ 的子空间,那么 $U_1,…,U_m$ 的和记作 $U_1+…+U_m$,定义为所有可能的来自这些子空间的元素的和的集合,即:
$U_1+…+U_m={u_1+…+u_m:u_1\in U_1,…,u_m\in U_m}$
一个例子是,平面直角坐标系中,横轴和竖轴是平面的两个子空间,它们的和为整个平面,而它们的并为两个数轴组成的十字区域。
子空间的和是包含这些子空间的最小子空间。
证明:
Easy to see that $0\in U_1+…+U_m$ and $U_1+…+U_m$ is closed under addition and scalar multiplication, thus the sum of subspaces is a subspace.
Clearly $U_1,…,U_m$ are all contained in $U_1+…+U_m$. Conversely, every subspace of $V$ containing $U_1,…,U_m$ contains $U1+…+U_m$.
Thus $U_1+…+U_m$ is the smallest subspace of $V$ containing $U_1,…,U_m$.
直和
假设 $U_1,…,U_m$ 是 $V$ 的子空间。如果 $U_1+…+U_m$ 中的元素只能以一种方式表示为 $u_1+…+u_m$($u_i\in U_i$),那么称 $U_1+…+U_m$ 为直和。记作 $U_1\oplus …\oplus U_m$。
直和的条件(当且仅当):只有一种方式将 $0$ 表示为 $u_1+…+u_m$($u_i\in U_i$),那就是取每个 $u_i = 0$。
证明:(当方向,仅当方向显然)
When there is only one way to represent $0$ as $u_1+…+u_m$ ($u_i\in U_i$):
Suppose there is 2 ways to represent an arbitary element $v$ in the sum as $u_i+…+u_m$, then we have:
$v = u_1+…+u_m$
$v = v_1+…+v_m$
substract these 2 equation, we get:
$0 = (u_1-v_1) + … + (u_m-v_m)$
Since $0$ can be only write in one way as $0 = 0 +… + 0$, we have:
$u_1 = v_1, …, u_m = v_m$
So an arbitary element can be only write in one way.
Thus this is a direct sum.
$\blacksquare$
直和的条件(当且仅当):$U\cap W = {0}$($U$ 与 $W$ 为子空间 )
证明:
only if direction: If $v\in U\cap W$, $0 = v + (-v)$ where $v \in U$ and $-v \in W$, because the representation is unique of zero, we have: $v=0$
if direction:
Suppose $U\cap W = {0}$ and $0 = u + w, u\in U, w\in W$
then we have: $u= -w \in W$, thus $u\in U\cap W$, thus $u = 0$, thus $w = 0$, thus $0=0+0$ is the only representation.
$\blacksquare$